



# **Faculty of Earth Sciences**







#### MAGNETIC AND GRAVITY EXPLORATION

| Course Name                      | Course ID | Prerequisite                     |
|----------------------------------|-----------|----------------------------------|
| MAGNETIC AND GRAVITY EXPLORATION | EGP 341   | EGP 211 / PHYS 202 /<br>MATH 202 |

## **Time Table for Course Lectures**

## MAGNETIC & GRAVITY EXPLORATION (EGP 341)

| Week | Topic                                                                                              |
|------|----------------------------------------------------------------------------------------------------|
| 1    | Introduction to the Course and General Meaning of Potential L/ Position Vector,                    |
|      | Attraction of Point Mass, Partial; Derivative of Potential <sup>[1]</sup>                          |
| 2    | Volume Potential and Its Partial Derivatives / Direct and Inverse Gravimetric Problem For          |
|      | Simple Gravitating                                                                                 |
| 3    | Case of Sphere in One Dimension: $V_z(X)$ , $V_{zz}(X)$ , $V_{zzz}(X)$ . Depth Estimation from the |
|      | Above Derivatives <sup>[2]</sup>                                                                   |
| 4    | Case of $Vxz(X)$ and $V_{\Delta}(X)$ . Depth Estimation from the Above Derivatives, Initial        |
|      | Formula for Gravimetric Interpretation (2D)                                                        |
| 5    | Gravity Measuring Instruments, Stable and Unstable Types, Gravity Surveying on Land.               |
|      | Gravity Base Station, Observation Sites, Tide and Drift                                            |
|      | Survey Operation. Gravity Reduction, the Latitude Adjustment, the Elevation Adjustment,            |
| 6    | the Excess-Mass Adjustment, Nettleton Method for Density Determination, Gravity                    |
|      | Anomaly <sup>[3]</sup>                                                                             |
| 7    | Concept of Isostacy, Different Hypothesis,                                                         |
|      | Midterm Exam                                                                                       |
| 8    | Introduction to Magnetic Methods, Principles and Elementary Theory Magnetic Force,                 |
|      | Field Strength, Moment, Dipole, Intensity of Magnetization                                         |
| 9    | Magnetic Susceptibility, Induction, B-H Relation, Units, Magnetostatic Potential, the              |
|      | General Magnetic Anomaly, Poisson's Relation, Field Equations                                      |
| 10   | Magnetism of the Earth, Nature of Geomagnetic Field, the Main Field, Origin of the Main            |

|    | Field, Curie Point, Secular Variations, External Magnetic Field, Cycles <sup>[4]</sup> |  |
|----|----------------------------------------------------------------------------------------|--|
| 11 | Local Magnetic Anomalies, Magnetism If Rocks And Minerals, Types Of Magnetizations,    |  |
|    | Diamagnetism, Paramagnetism, Ferromagnetism, Ferrimagnetism.                           |  |
| 12 | Residual Magnetism: CRM, DRM, IRM, TRM, V And VRM, Group Project Discussion            |  |
| 13 | Magnetic Susceptibilities of Rocks, Field Instrumentation, Surveying, Electronic       |  |
|    | Magnetometers, Flux-Gate Magnetometer                                                  |  |
| 14 | Proton Precession Magnetometer, Optical Pumped Vapor, Vertical and Horizontal          |  |
|    | Gradient Measurements. Field Techniques                                                |  |
| 15 | Group Project                                                                          |  |
| 16 | Final Exam                                                                             |  |

#### References:

- [1] *Introduction to Geophysical Prospecting (4th ed.)*, by Dobrin, M. B. and C. H. Savit, 1988. McGraw Hill.
- [2] Teacher notes
  - [3] Fundmentals of Geophysics, by Lowrie, W., 1997. Cambridge University Press
- [4]] *Interpretation Theory in Applied Geophysics*, by Grant, F.S. and West, G.F., 1965. McGraw-Hill.

## **Magnetic & Gravity Exploration (EGP 341)**

#### Time Table for Lab. Work

| Wee | Lab    | Exp/Practical Title                                   |
|-----|--------|-------------------------------------------------------|
| k   |        |                                                       |
| 1   | Lab 1  | Gravity Effect of Simple Geometrical Models: A Sphere |
| 2   | Lab 2  | Vz, Vzz, Vzzz of a Spherical Model                    |
| 3   | Lab 3  | Effect of Density and Depth Variation                 |
| 4   | Lab4   | Drift Correction*                                     |
| 5   | Lab 5  | Bouguer Reduction                                     |
| 6   | Lab 6  | Free-Air Correction                                   |
| 7   | Lab 7  | Effect Due to a Faulted Model, Depth Determination    |
| 8   | Lab 8  | Magnetic Effect of Simple Geometrical*                |
| 0   |        | Models: Effect of Magnetized Sphere                   |
| 9   | Lab 9  | Effect of Magnetized Cylinder, Fault                  |
| 10  | Lab 10 | Estimation of Depth Using Peter's Method              |
| 11  | Lab 11 | Estimation of Depth Using Straight Slope Method       |
| 12  | Lab 12 | Revision**                                            |
| 1.0 | Lab 13 | FINAL LAB EXAMINATION                                 |
| 13  |        |                                                       |
|     |        | #CI 1 PI 1 1 ##C II . I 1 PI                          |

<sup>\*</sup>Check File Labs, \*\*Collect Lab Files